If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+55x-252=0
a = 2; b = 55; c = -252;
Δ = b2-4ac
Δ = 552-4·2·(-252)
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5041}=71$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-71}{2*2}=\frac{-126}{4} =-31+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+71}{2*2}=\frac{16}{4} =4 $
| x×0.3=4 | | 16-2(x+3)=6 | | 15x+12/2=7x-8 | | 41/3+b=51/6 | | 1.4z-6z=3 | | 11/33=x/39 | | (1-3x)2=3(5+x) | | x/2+x/5+x/10=64 | | 27x=6x-30 | | 27x=6x+30 | | (0.2-x)*1.8=x^2 | | 5x-2(3-x)=8-x | | 12=x=5 | | F(x)=2,5x*2–6x+12 | | F()=2,5x*2–6x+12 | | 5x-15=2x-13 | | -8x-3=27 | | 5x-0=6 | | 4^2-28x+130=0 | | 19x-3=8x+3 | | 8h=3h+40 | | 6m+8=3m+12 | | 2^(x-1)+5=13 | | x=(15-2x)(8-2x)x | | 2^x-1+5=13 | | 5x=10x=2 | | 6-x÷7-x=16÷21 | | 2x+10=3x-77 | | 0.4×n=12 | | 3(42-4p)=7p+3(8p-4) | | 3(4j+10)=150 | | 2(3x-7)-3(5+2x)=26 |